Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612912

RESUMO

Leaf rolling is regarded as an important morphological trait in wheat breeding. Moderate leaf rolling is helpful to keep leaves upright and improve the photosynthesis of plants, leading to increased yield. However, studies on the identification of genomic regions/genes associated with rolling leaf have been reported less frequently in wheat. In this study, a rolling leaf mutant, T73, which has paired spikelets, dwarfism, and delayed heading traits, was obtained from a common wheat landrace through ethyl methanesulfonate mutagenesis. The rlT73 mutation caused an increase in the number of epidermal cells on the abaxial side and the shrinkage of bulliform cells on the adaxial side, leading to an adaxially rolling leaf phenotype. Genetic analysis showed that the rolling leaf phenotype was controlled by a single recessive gene. Further Wheat55K single nucleotide polymorphism array-based bulked segregant analysis and molecular marker mapping delimited rlT73 to a physical interval of 300.29-318.33 Mb on the chromosome arm 1BL in the Chinese Spring genome. We show that a point mutation at the miRNA165/166 binding site of the HD zipper class III transcription factor on 1BL altered its transcriptional level, which may be responsible for the rolling leaf phenotype. Our results suggest the important role of rlT73 in regulating wheat leaf development and the potential of miRNA-based gene regulation for crop trait improvement.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Triticum/genética , Mutação , Cromossomos
2.
Plant Dis ; 107(3): 879-885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36044366

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases in wheat production. Pyramiding of adult-plant resistance (APR) genes is a promising strategy to increase durability of resistance. The stripe rust resistance (R) genes Yr18, Yr28, and Yr36 encode different protein families which confer partial resistance to a broad array of P. striiformis f. sp. tritici races. Here, we developed BC3F5 wheat lines representing all possible combinations of Yr18, Yr28, and Yr36 in a genetic background of the highly P. striiformis f. sp. tritici-susceptible wheat line SY95-71 that is widely used in stripe rust analysis. These lines enabled us to accurately evaluate these genes singly and in combination in a common genetic background. The adult plant resistance experiments were analyzed in the field, where stripe rust epidemics occurred frequently. The field results indicated that these partial R genes act additively in enhancing the levels of resistance, and a minimum of two-gene combinations can generate adequate stripe rust resistance. The Yr28 + Yr36 and Yr18 + Yr28 + Yr36 combinations also showed adequate resistance at the seedling stage, implying that APR gene pyramiding can achieve all-stage resistance. Meanwhile, the three genes were simultaneously introduced into elite wheat lines through gene-based marker selection. Elite lines exhibited strong all-stage resistance to stripe rust. This work provides valuable insights and resources for developing durable P. striiformis f. sp. tritici-resistant varieties and for elucidating the regulation mechanism of partial R gene pyramiding.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Basidiomycota/fisiologia , Genes de Plantas , Marcadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...